Petróleo, definições gerais.

Fonte 1 : Wikipedia

Petróleo (do latim petroleum, petrus = pedra e oleum = óleo, do grego πετρέλαιον [petrélaion], “óleo da pedra”, do grego antigo πέτρα [petra], pedra + έλαιον [elaion] óleo de oliva, qualquer substância oleosa, no sentido de óleo bruto), é uma substância oleosa, inflamável, geralmente menos densa que a água, com cheiro característico e coloração que pode variar desde o incolor ou castanho claro até o preto, passando por verde e marrom (castanho).

Combinação complexa de hidrocarbonetos, composta na sua maioria de hidrocarbonetos alifáticos, alicíclicos e aromáticos, podendo conter também quantidades pequenas de nitrogêniooxigênio, compostos de enxofre e íons metálicos, principalmente de níquelvanádio. Esta categoria inclui petróleos leves, médios e pesados, assim como os óleos extraídos de areias impregnadas de alcatrão. Materiais hidrocarbonatados que requerem grandes alterações químicas para a sua recuperação ou conversão em matérias-primas para a refinação do petróleo tais como óleos de Xisto crus, óleos de xisto enriquecidos e combustíveis líquidos de hulha, não se incluem nesta definição.

O petróleo é um recurso natural abundante, porém sua pesquisa envolve elevados custos e complexidade de estudos. É também atualmente a principal fonte de energia. Serve como base para fabricação dos mais variados produtos, dentre os quais destacam-se: benzinas, óleo dieselgasolina, alcatrão, polímerosplásticos e até mesmo medicamentos. Já provocou muitas guerras e é a principal fonte de renda de muitos países, sobretudo no Oriente Médio.

Além de gerar a gasolina que serve de combustível para grande parte dos automóveis que circulam no mundo, vários produtos são derivados do petróleo como, por exemplo, a parafinaGLPprodutos asfálticosnafta petroquímica, querosene, solventes, óleos combustíveis, óleos lubrificantes, óleo diesel e combustível de aviação.

Origem

hipótese mais aceita leva em conta que, com o aumento da temperatura, as moléculas do querogênio começariam a ser quebradas, gerando compostos orgânicos líquidos e gasosos, num processo denominado catagênese. Para se ter uma acumulação de petróleo seria necessário que, após o processo de geração (cozinha de geração) e expulsão, ocorresse a migração do óleo e/ou gás através das camadas de rochas adjacentes e porosas, até encontrar uma rocha selante e uma estrutura geológica que detenha seu caminho, sobre a qual ocorrerá a acumulação do óleo e/ou gás em uma rocha porosa chamada rocha reservatório.

É de aceitação para a maioria dos geólogos e geoquímicos, que ele se forme a partir de substâncias orgânicas procedentes da superfície terrestre (detritos orgânicos), mas esta não é a única teoria sobre a sua formação.

Uma outra hipótese, datada do século XIX, defende que o petróleo teve uma origem inorgânica, a partir dos depósitos de carbono que possivelmente foram formados com a formação da Terra.

Resumindo, há inúmeras teorias sobre o surgimento do petróleo, porém a mais aceita é que ele surgiu através de restos orgânicos de animais e vegetais depositados no fundo de lagos e mares, sofrendo transformações químicas ao longo de milhares de anos. Substância inflamável, possui estado físico oleoso e com densidade menor do que a água. Sua composição química é uma combinação de moléculas de carbono e hidrogênio (hidrocarbonetos).

Geologia

O petróleo está associado a grandes estruturas que comunicam a crosta e o manto da terra, sobretudo nos limites entre placas tectônicas.

O petróleo e gás natural são encontrados tanto em terra quanto no mar, principalmente nas bacias sedimentares (onde se encontram meios mais porosos – reservatórios), mas também em rochas do embasamento cristalino. Os hidrocarbonetos, portanto, ocupam espaços porosos nas rochas, sejam eles entre grãos ou fraturas. São efetuados estudos das potencialidades das estruturas acumuladoras (armadilhas ou trapas), principalmente através de sísmica que é o principal método geofísico para a pesquisa dos hidrocarbonetos.

Durante a perfuração de um poço, as rochas atravessadas são descritas, pesquisando-se a ocorrência de indícios de hidrocarbonetos. Logo após a perfuração são investigadas as propriedades radioativas, elétricas, magnéticas e elásticas das rochas da parede do poço através de ferramentas especiais (perfilagem) as quais permitem ler as propriedades físicas das rochas, identificar e avaliar a ocorrência de hidrocarbonetos.

—————————————————————————————–

Comparativos

COMPOSIÇÃO QUÍMICA DOS MAGMAS

A composição química de um magma é convencionalmente expressa em termos de elementos maiores, menores e traços. Os elementos maiores e menores são expressos como óxidos: SiO2, Al2O3, FeO, Fe2O3, CaO, MgO e Na2O (elementos maiores); K2O, TiO2, MnO e P2O5 (elementos menores). Elementos maiores são, por definição, aqueles com abundâncias acima de 1% em massa, ao passo que elementos menores são aqueles entre 0,1 e 1% da massa. Alguns elementos, tais como o Potássio (K) e o Titânio (Ti) estão presentes como elementos de abundância menor em algumas rochas, mas podem atingir proporções de elementos maiores em outras. Abaixo de 0,1% de massa, entra-se no domínio dos elementos traço, sendo que a concentração desses elementos é convencionalmente expressa em termos de ppm (partes por milhão). Os principais elementos traços presentes no magma são: V, Cr, Ni, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Yb, Lu, Ta, Hf, Th e U. Diversos óxidos e elementos voláteis (os gases)  podem ser adicionados a esta lista, entre os quais se destacam o H2O, o CO2, o SO2, o Cl e o F.

Magmas de origem crustal (riolíticos, dacíticos ou andesíticos) são ricos em O, Si, Al, Na, K e H, enquanto que magmas gerados no manto terrestre (basálticos) são mais ricos em O, Si, Al, Ca, Mg e Fe. Magmas carbonatíticos (que contém mais de 50% de carbonatos) também são gerados no manto terrestre.

Gases produzidos pelas erupções Vulcanicas

Os gases vulcânicos são constituídos por um número restrito de elementos químicos, mas em várias espécies moleculares. Elementos maiores consistem de Hidrogênio (H), Carbono (C), Oxigênio (O), Enxofre (S), Nitrogênio (N), Cloro (Cl), Flúor (F) e Bromo (Br). Elementos menores incluem os gases nobres Hélio (He), Radônio (Rn), Neônio (Ne), Argônio (Ar), Kriptônio (Kr) e Xenônio (Xe). Quantidades traços de metais (por exemplo, Sódio, Vanádio, Cromo, Bismuto, Cobre, Zinco e Ouro) ocorrem em gases fumarólicos de altas temperaturas.

O Hidrogênio é preferencialmente presente como vapor de água (H2O), com outras espécies à base de Hidrogênio ocorrendo em quantidades menores ou traços, tais como Hidrogênio molecular (H2), Metano (CH4) e Amônia (NH3). Das espécies do Carbono, o Dióxido de Carbono (CO2) é o dominante, ao passo que Metano (CH4) e Monóxido de Carbono (CO) ocorrem em quantidades menores. Dióxido de Enxofre (SO2), Ácido Sulfídrico (H2S) e Enxofre molecular (S2) compõem as principais espécies de Enxofre. Cloro, Flúor e Bromo ocorrem principalmente como ácidos, com o Ácido Clorídrico (HCl) predominando sobre o Ácido Fluorídrico (HF) e o Ácido Bromídrico (HBr). O Nitrogênio existe quase que exclusivamente como Nitrogênio molecular (N2). Quando presentes na fase gasosa, os metais são transportados grandemente como Sais de Enxofre ou de Cloro, e, em menor extensão, como espécies voláteis elementares.

Os gases mais abundantes liberados para a atmosfera a partir de um sistema vulcânico são o vapor de água (H2O, 30-90 mol%), seguido por Dióxido de Carbono (CO2, 5-40 mol%) e Dióxido de Enxofre (SO2, 5-50 mol%). Vulcões também podem liberar pequenas quantidades de outros gases, incluindo Ácido Sulfídrico(H2S, <2 mol%), Hidrogênio (H2, <2 mol%), Monóxido de Carbono (CO, <0,5 mol%). Alguns destes gases, quando emitidos a partir de condutos vulcânicos, reagem na atmosfera ou na pluma vulcânica formando aerossóis, os mais importantes sendo o Ácido Clorídrico (HCl), Ácido Fluorídrico (HF) e o Ácido Sulfúrico (H2SO4).

Nota:

“Processo para remoção de enxofre do petróleo bruto”. O objetivo geral desta invenção é prover um processo melhorado para adoçamento e dessulfurização de correntes de óleo bruto contendo enxofre. Aquecimento de corrente de óleo bruto contendo enxofre a uma temperatura elevada por um período prolongado de tempo enquanto se agita e borbulha um gás inerte no produto bruto acelera a remoção de gases contendo enxofre da corrente de óleo bruto. Além disso, a adição de uma polialquilamina ao óleo bruto agitado pode também auxiliar grandemente na expulsão de gases contendo enxofre. Após processamento nestas condições a capacidade de produção de sulfeto de hidrogênio do óleo bruto é reduzida significativamente, tornando o produto bruto mais seguro para transporte e manuseio reduzindo os riscos para saúde e para o ambiente.

Preciso de um pouco de Ar…depois continuo

Sobre @le_oshiro
....

Deixe uma Resposta

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão / Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão / Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão / Alterar )

Google+ photo

Está a comentar usando a sua conta Google+ Terminar Sessão / Alterar )

Connecting to %s

%d bloggers like this: